Direct access to content

advanced

Abdul Barakat's Cardiovascular and Cellular Engineering Lab

Publications

Home > Publications

B. Cellular Mechanics and Mechanotransduction

B37. Hogan B, Babataheri A, Hwang Y, Barakat AI, Husson J. Characterizing cell adhesion by using micropipette aspiration. Biophysical Journal 109:209-219, 2015. PDF

B36. Hwang Y, Kumar P, Barakat AI. Intracellular regulation of cell signaling cascades: how location makes a difference. Journal of Mathematical Biology 69: 213-242, 2014. PDF

B35. Hwang Y, Gouget CLM, Barakat AI. Mechanisms of cytoskeleton-mediated mechanical signal transmission in cells. Communicative & Integrative Biology 5: 538-542, 2012. PDF

B34. Hwang Y and Barakat AI. Dynamics of mechanical signal transmission through prestressed fibers. PLOS One 7: e35343, 2012. PDF

B33. Morgan JT, Wood JA, Shah NM, Hughbanks ML, Russel P, Barakat AI, Murphy CJ. Integration of basal topographic cues and apical shear stress in vascular endothelial cells. Biomaterials 33: 4126-4135, 2012. PDF

B32. Wells MA, Abid A, Kennedy IM, Barakat AI. Serum proteins prevent the aggregation of Fe2O3 and ZnO nanoparticles. Nanotoxicology. In Press. PDF

B31. Morgan JT, Pfeiffer ER, Thirkill TL, Kumar P, Peng G, Fridolfsson HN, Douglas GC, Starr DA, Barakat AI. Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization. Molecular Biology of the Cell 22: 4324-4334, 2011. PDF

B30. Mazzag BM, Barakat AI. The effect of noisy flow on endothelial cell mechanotransduction: a computational study. Annals of Biomedical Engineering 39: 911-921, 2011. PDF

B29. Barakat AI, Gojova A. Role of ion channels in cellular mechanotransduction: lessons learned from the vascular endothelium. In: Cellular Mechanotransduction: Diverse Perspectives from Molecules to Tissue, Cambridge University Press, pp. 161-180, 2009.

B28. Barakat AI. Dragging along: the glycocalyx and vascular endothelial cell mechanotransduction. Circulation Research 102: 747-748, 2008 (invited editorial). PDF

B27. Chang E, O’Donnell ME, Barakat AI. Shear stress and 17β-estradiol modulate cerebral microvascular endothelial Na-K-Cl cotransporter and Na/H exchanger protein levels. American Journal of Physiology 294: C363-C371, 2008. PDF

B26. Cao TC, Thirkill TL, Wells M, Barakat AI, Douglas GC. Trophoblasts and shear stress induce an asymmetric distribution of ICAM-1 in uterine endothelial cells. American Journal of Reproductive Immunology 59: 167-181, 2008. PDF

B25. Barakat AI, Lieu DK, Gojova A. Ion channels in shear stress sensing in vascular endothelium. In: Molecular Sensors for Cardiovascular Homeostasis, Springer, pp. 155-170, 2007.

B24. Westwood S, Gojova A, Kuo B, Barakat AI, Gray BL. Initial investigation of SU-8 photopolymer as a material for non-invasive endothelial cell research platforms. Proceedings of SPIE: Microfluidics, BioMEMS, and Medical Microsystems V 6465: 64650S1-64657S8, 2007. PDF

B23. Thirkill TL, Cao TC, Stout M, Blankenship TN, Barakat AI, Douglas GC. MUC1 is involved in trophoblast transendothelial migration. Biochimica et Biophysica Acta 1773: 1007-1014, 2007. PDF

B22. Gautam M, Gojova A, Barakat AI. Flow-activated ion channels in vascular endothelium. Cell Biochemistry and Biophysics 46: 277-284, 2006. PDF

B21. Gautam M, Shen Y, Thirkill TL, Douglas GC, Barakat AI. Flow-activated chloride channels in vascular endothelium: shear stress sensitivity, desensitization dynamics, and physiological implications. Journal of Biological Chemistry 281: 36492-36500, 2006. PDF

B20. Barakat AI, Lieu DK, Gojova A. Secrets of the code: do vascular endothelial cells use ion channels to decipher complex flow signals? Biomaterials 27: 671-678, 2006 (Leading Opinion paper – invited). PDF

B19. Soghomonians A, Barakat AI, Thirkill TL, Douglas GC. Trophoblast migration under flow is regulated by endothelial cells. Biology of Reproduction 73: 14-19, 2005. PDF

B18. Gojova A, Barakat AI. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. Journal of Applied Physiology 98: 2355-2362, 2005. PDF

B17. Thirkill TL, Lowe K, Vedagiri H, Blankenship TN, Barakat AI, Douglas GC. Macaque trophoblast migration is regulated by RANTES. Experimental Cell Research 305: 355-364, 2005. PDF

B16. Soghomonians A, Thirkill TL, Barakat AI, Douglas GC. Effect of aqueous tobacco smoke extract and shear stress on PECAM-1 expression and cell motility in human uterine endothelial cells.  Toxicological Sciences 81: 408-418, 2004. PDF

B15. Thirkill TL, Hedren SR, Soghomonians A, Mariano N, Barakat AI, Douglas GC. Regulation of trophoblast β1-integrin expression by contact with endothelial cells. Cell Communication and Signaling 2: 4-14, 2004. PDF

B14. Lieu DK, Pappone PA, Barakat AI. Differential ion channel and membrane potential responses to different types of shear stress in vascular endothelial cells. American Journal of Physiology 286: C1367-C1375, 2004. PDF

B13. Mazzag B, Tamaresis JS, Barakat AI. A model for shear stress sensing and transduction in vascular endothelial cells. Biophysical Journal 84: 4087-4101, 2003. PDF

B12. Barakat AI, Lieu DK. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochemistry and Biophysics 38: 323-343, 2003. PDF

B11. Soghomonians A, Barakat AI, Thirkill TL, Blankenship TN, Douglas GC. Effect of shear stress on migration and integrin expression in macaque trophoblast cells. Biochimica et Biophysica Acta 1589: 233-246, 2002. PDF

B10. Gray BL, Lieu DK, Collins SD, Smith RL, Barakat AI. Microchannel platform for the study of endothelial cell shape and function. Biomedical Microdevices 4: 9-16, 2002. PDF

B9. Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. American Journal of Physiology 281: L529-L533, 2001. PDF

B8. Barakat AI. A model for shear stress-induced deformation of a flow sensor on the surface of vascular endothelial cells. Journal of Theoretical Biology 210: 221-236, 2001. PDF

B7. Suvatne J, Barakat AI, O'Donnell ME. Shear stress regulation of endothelial Na-K-Cl co-transport expression: dependence on K+ and Cl- channels. American Journal of Physiology 280: C216-C227, 2001. PDF

B6. Gray BL, Barakat AI, Lieu DK, Collins SD, Smith RL. Modular microinstrumentation for endothelial cell research. Proceedings of SPIE: Progress in Biomedical Optics - Micro- and Nanotechnology for Biomedical and Environmental Applications 3912: 88-94, 2000.

B5. Lum RM, Wiley LM, Barakat AI. Influence of different forms of shear stress on vascular endothelial TGF-β1 mRNA expression. International Journal of Molecular Medicine 5: 635-641, 2000. PDF

B4. Barakat AI. Responsiveness of vascular endothelium to shear stress: potential role of ion channels and cellular cytoskeleton. International Journal of Molecular Medicine 4: 323-332, 1999.

B3. Barakat AI, Leaver EV, Pappone PA, Davies PF. A flow-activated chloride-selective membrane current in vascular endothelial cells. Circulation Research 85: 820-828, 1999. PDF

B2. Barakat AI, Davies PF. Mechanisms of shear stress transmission and transduction in endothelial cells. Chest 114: 58S-63S, 1998. PDF

B1. Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, Griem M, Wernick M, Jacobs E, Polacek DC, DePaola N, Barakat AI. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annual Review of Physiology 59: 527-549, 1997. PDF